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We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We 

simply add a second-order axial sag to the base grazing incidence cone-cone telescope. 

The radius of curvature of the sag terms is the same on the primary surface and on the 

secondary surface. The design is optimized so that the on-axis image spot at the focal 

plane is minimized. The on-axis RMS spot diameter of two studied telescopes is less than 

0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 

telescopes. 

OCIS codes: 340.7470, 340.7440, 220.1000, 220.2740 

1. Introduction 

This x-ray telescope design study was prompted by our desire to find more practical and 

cheaper telescopes for the Constellation-X mission (CSX)1. The CSX observatory is 

comprised of 4 satellites. Each satellite has two telescopes on-board: the hard x-ray 

telescope (HXT) and the spectroscopic x-ray telescope (SXT)2. The baseline SXT 

telescope design is nested Wolter type 1 design (W). The entrance aperture diameter is 

1.6 m and the telescope axial focal length is 10 m.  The mirrors can be up to 300 mm 

long.  There are up to 167 mirror shells nested inside each other. The on-axis angular 

resolution requirement for the SXT telescopes is 15” HPD at 1 KeV. The field of view 

(FOV) of the SXT telescope is limited to 1.25 arc-minutes. 
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Over the years several x-ray telescope configurations have been proposed. 

Wolter3 introduced paraboloid-hyperboloid type1designs. These designs have been 

widely used in x-ray astronomy. The W type 1 designs consist of paraboloidal primary 

mirror and confocal hyperboloidal secondary mirror. The telescope forms stigmatic on-

axis image from infinite object. The telescope manufacturing errors always limit the on-

axis image quality. This design has finite amount of coma4. Other large aberrations are 

the field curvature and fifth order oblique spherical aberration. Mangus and Underwood5 

presented a detailed design study of W type 1 telescopes for solar applications. 

VanSpeybroeck and Chase6 have performed through design study of W type 1 telescopes 

including the nested designs. 

Wolter-Schwarzschild7 (WS) designs offer the best image quality for narrow FOV 

applications. These designs are free of third order spherical aberration and coma. Chase 

and VanSpeybroeck8 have done the basic design study of these telescopes. The surfaces 

of the WS telescopes are complex functions of system parameters and are difficult to 

fabricate and test. 

Optical designs for cone-cone type 1 telescopes have been designed and built9,10. 

The advantage of this design is its simplicity. Since the telescope axial profiles do not 

have curvature, the focusing power of the design is very limited. In case of the CSX/SXT 

telescope, this aberration would consume large proportion of the resolution requirement. 

Werner11 studied and designed several polynomial x-ray telescopes. He 

compensated the on-axis spherical aberration against oblique spherical aberration. The 

resulting designs have more uniform resolution across the field of view. These designs 

are good for applications where large FOV is required. C.J. Burrows et al12 and P. 
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Conconi et al13 have introduced specialized merit functions to optimize polynomial 

grazing incidence telescope for wide-field x-ray imaging. 

Nariai14,15 designed a telescope consisting of 2 hyperboloids. In his designs 

spherical aberration is used to compensate oblique spherical aberration and coma is also 

minimized. Harvey16 used advanced features of ZEMAX lens design software to optimize 

hyperboloid-hyperboloid telescope for solar applications. These designs are excellent 

choices for missions where large FOV (~ 30 – 40 arc-minutes) is required. 

In this paper we introduce a new type of x-ray telescope. The cone-cone 

telescopes are easiest to fabricate and test. Unfortunately, these designs have very poor 

on-axis resolution. Our basic idea is to improve on-axis performance of the cone-cone 

design by introducing second order axial curvature to the surfaces of the cone-cone 

telescope. We also require that the curvature is the same both on the primary and 

secondary. The basic concept is shown in Figure 1. In Section II we present the basic 

equations for the design of cone-cone telescope. In Section III we introduce the surface 

equations of the Equal-Curvature (EC) telescope and show how these surfaces are 

derived from surfaces with purely spherical axial profiles. The derivation of basic 

parameters of the EC telescope is shown in Section IV. The equations include the 

derivation of an equation for the radius of curvature of the mirrors and show how it 

relates to basic system parameters. In Section V we introduce our analysis code (Optical 

Surface Analysis Code17), the surface equations of the OSAC code, and the principles we 

used to study the EC telescopes using the OSAC code. 

In Section VI we present our study results for 2 EC designs (#1 and #2). The 

design #1 matches closely the size requirements of the CSX/SXT outer shell. The radial 
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height of this shell is 800 mm.  The radial height of the design #2 is 200 mm. The grazing 

angles of this design are 4 times shallower than the grazing angles of the design #1. 

 

2. Design of Cone-Cone Telescope 

 

The cone-cone telescope is shown in Figure 1.This design consists of a primary cone and 

secondary cone. The intersection plane of the cones defines the system optical properties. 

The radial height (h0) at this intersection plane and the axial distance (L) from this plane 

to the focal plane define the basic optical properties of the design.  The third important 

design parameter is the grazing angle (i10) incoming rays make with the surfaces. To 

optimize the telescope effective area, the grazing angle on the primary and the secondary 

are chosen to be equal. One needs also to select the axial lengths of the primary (L1) and 

secondary (L2) and the axial distances from the back of the primary to the intersection 

plane (c1) and from the intersection plane to the secondary mirror (c2). 

Under these assumptions the design work is trivial. The surface equations of the 

primary (j=1) and secondary (j=2) in the telescope coordinate system can be expressed 

as: 

 

h h z ij j j= −0 0tan( )                                       (1) .

 

If the grazing angles are identical on the surfaces, then the slope angle of the secondary is 

i20 = 3 i10.  
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Since the cone-cone telescope does not have a second or higher order component 

on the surface equations, the design cannot focus the rays in its radial cross-section. A 

collimated in-coming bundle of rays is bent towards the optical axis, but stays radially 

collimated. A ring of rays hitting the primary and secondary is focused to an on-axis 

point at different axial locations near the focal plane.  The radial height of the image as a 

function the primary mirror radial height h1 is: 

),4cos(/))4sin()(( 1010001 iiLLhhH −−−=       (2) 

where L0=h0/tan(4i10) is the axial distance from the surface intersection to the focus of 

rays that hit the primary-secondary intersection ring. The best focus location is chosen so 

that the focused energy on both sides of the focal plane is equal. This corresponds to 

primary mirror radial height   

c1 1 1max minh h h2 2 2= +( ) /           (3) 

 

where h1max and h1min are the maximum and minimum radial heights of the primary 

mirror. 

Two parameters are needed to design a cone-cone telescope. We start with the L 

and i10 parameters. The L parameter defines the axial distance from the focal plane to the 

intersection of the surfaces and the i10 parameter defines the grazing angle of the primary 

mirror. The radial height at the intersection of the surfaces is approximately: 

 

h L ii approximation0 104_ tan( )=           (4) 
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The exact solution for h0 can be derived from Eq. (2) by substituting h1c for h1 and 0 for 

the image height H. The solution is: 

 

h0 = ,
B B AC

A

2− + −            

           (5) 

 

where A, B, and C are expressed as functions of basic parameters L and i10 and 

dimensional parameters L1 and c1. The A, B, and C parameters are: 

 

A i= − −1 1 4 10
2( cos( ))           (6) 

 

B
L

c i L i i= + − −( ) tan( ) sin( )( cos( )1
1 10 10 12

4 1 4
 

0

           (7) 

 

 
L c c i

L i=
+ +

−
[( ) ] tan ( )

sin ( ).1 1
2

1
2 2

10 2 2
102

4C 

           (8) 

 

After h0 is known, the mirror dimensions can be calculated from Eq. (1). To avoid 

on-axis vignetting, the dimensional parameters L2 and c2 have to be chosen so that the on-

axis rays intersecting the primary mirror will also intersect the secondary mirror. 
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3. Surface Equations of Equal-Curvature Telescope 

 

To improve the on-axis focusing capability of the cone-cone telescope, we add axial sag 

to the cone surfaces. For grazing incidence mirrors the sag is very small and can 

conveniently be approximated by using a spherical axial profile. This profile is then 

rotated about the optical axis to produce the surface of revolution. A cross-sectional view 

of the resulting surfaces is illustrated in Figure 1. Assuming spherical cross-section and 

the same radius of curvature (R) on the primary and secondary, the surface equations of 

the primary mirror (j=1) and secondary mirror (j=2) in the body centered coordinate 

system of the cones are: 

R i R z R ij sph j j j sph j_ _cos( ) ( sin( ))= − + − +0 0
2

0
2h h           (9) 

           

Since the radius of the spherical surface is very large compared to the axial coordinate, 

equation can be approximated as: 

 
h h z i

z
R ij sph j j sph j

j sph

j
_ _

_tan( )
cos

≈ − −0 0

2

3
02 (10) 

 

Third and higher order terms in zj_sph are dropped in the expansion. Equation (10) is 

simply the equation of a cone with a second order correction added to the cone surface. 

The design and analysis of EC telescopes is based on Eq. (10).  The surface equations of 

the EC telescope can now be abbreviated by: 

 

          (11) ,2
jjjjj azahh ++=  

210 j cz
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where a1j = -tan(ij0), a2j =1/(2 cos3(ij0)), and c = curvature of the surfaces (=1/R). 

 

4. Design parameters for Curvature- Telescopes 

 

To design an EC telescope the coefficients of the surface equations need to be described 

in terms of more convenient system parameters. For x-ray telescopes best choices are the 

radial height at the surface intersection of the mirrors, the grazing angles at the 

intersection of the mirrors and the telescope axial length. There are 6 coefficients in the 

surface equations of the primary and secondary. As for the cone-cone telescope, we select 

the grazing angle i10 of the primary mirror and the axial focal length L of the telescope to 

be our input parameters. We also require that the grazing angles of the primary and 

secondary at the surface intersection of the primary and secondary mirror are equal. 

Under this condition a12 = -tan (3 i10) and a22 = 1/(2 cos(3 i10)). The radial height h0 at 

the surface intersection point and the curvature c of the surfaces are derived from the 

focusing requirement we set for the telescope. 

Curvature c can be solved from the minimum on-axis image requirement. To find 

the equations for the minimum on-axis image blur, approximate transverse ray equations 

are first derived for the system. The design is symmetric about the optical axis and only 

an arbitrary on-axis ray is traced and an equation for the radial component of the ray at 

the image plane is derived. The radial height (H) of an on-axis ray in terms of H0 = (h0-L 

tan(4i10)), i10, R, and L is: 
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           (12) 

 
H H z i i cL i cz

cL
i

= + − − + + + − +0 1 10 10
3

10
2

1
2

10

25
3

4 66
1
2

8
[ ( )] ( ).

 

Only the second order terms in z1 are kept in Eq. (12). Terms up to third order in i10 are 

kept in the first order z1-coefficient and –1st and 0th order terms are kept in z1
2-coefficient. 

Eq. (12) is derived in Appendix A. Higher order terms in the expansion are negligible 

since grazing angle i10 is typically small (~1 degree) and radius of curvature (1/c) of the 

mirrors is very large (1-10 km) 

Curvature c could be calculated from Eq. (12) by deriving first the RMS value of 

the radial image height and, then, solving the equation for curvature c. A simpler 

derivation is shown in this paper. Since Eq. (12) is quadratic in z1 the image radial height 

goes through minimum when the primary mirror axial coordinate z1 changes from its 

maximum value to its minimum value. Assuming that the minimum H value occurs at the 

primary mirror axial center point (z1= -L1/2-c1), then, by taking the derivative of Eq. (12) 

with respect to z1 and solving for c, we find: 

 

           (13) .
164

c +=
)

2
(3

6
49

2

1
1

10
3
1010

L

cLi

L

ii +−

 
In Eq.(13) only the 2nd  order (1/L) terms are kept and also  i10 terms up to 3rd order are 

kept in the first part of the equation and up to 1st order in the second part of the equation.   

Approximate solution for the h0 parameter can be found from Eq. (13). Since Eq. 

(13) is quadratic, image radial height should reach 0 value when z11 = -L1/4-c1 or z12= -

3L1/4-c1. Using the first root we find for h0: 
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5. Surface Equations of OSAC 

We used the Optical Surface Analysis Code (OSAC) to ray trace the resulting optical 

designs. In the OSAC program the surface equations of grazing incidence design are 

given in the body centered coordinate system (ρj,zj) shown in Figure 1 in the following 

format: 

 

           (15) ,2 22 zPz −+= ρρ 0 jjjjjj K

 

where ρ0j is the radial height at the axial midpoint of the surface, and Kj and Pj are 

constants.  A second-order correction term can be added to the base surface using 

OSAC’s Legendre polynomials. The second order Legendre term is: 

 

 

           (16) 
2 L

),1)
2

(3( 22 −=
j

jj
j

zd
sag

 

where Lj is the axial length of the surface and d2j is a constant. 

The OSAC parameters for cone surfaces can be simply calculated from Eq.(1) by 

squaring the equation and, then,  relating the parameters with the parameters of Eq.(15). 

The OSAC input parameters for the EC telescope can now be expressed using 

Eqs.(15) and (16).  The parameters are derived from Eqs.(1) and (11) by translating the 
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origin of the coordinate to the  body centered coordinate system of the surface. The 

results for the surface parameters are: 

 

           (17) )(cos12 j0
3

2

2
j

j iR
L

d −=

 

           (18) d

 
ρ0 1

2

2j j
jA= +

 

           (19) 
K A A

d
j j j

j
= − +2 1

2

2
( )

           (20) P Aj j= − 2
2 ,

 

where 

 

           (21) A h
L

c i

L
c

R ij
j

j j

j
j

j
1 0 0

2

3
02

2
2

= ± + −
+

( ) tan( )
( )

cos ( )

 

           (22) A i

L
c

R ij j

j
j

j
2 0 3

0

2=
+

tan( )
cos ( )

µ

 

In Eqs. (21) and (22) the upper sign refers to primary mirror (j=1) and the lower sign 

refers to the secondary mirror (j=2). 

6. Design and Performance of Equal-Curvature Telescope 

We have studied EC telescope designs that closely match the size of the Constellation-X 

SXT telescopes. For this paper we selected two designs from the nested set of 

Constellation-X telescopes. The basic dimensions and parameters are listed in Tables 1 
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and 2 for both the EC and equivalent W telescopes. The radial heights of these designs at 

the primary-secondary intersection plane are 800 mm and 200 mm. The W designs are 

equivalent with the EC designs in the sense that they have the same radial height h0 at the 

surface intersection point and the same axial focal length L.  

The shape of the axial profile of the EC telescope is purely second-order in zj (see 

Eq.(16)). The axial sag varies from –d2/2 to d2 along the optical axis from the center of 

the surface to the maximum or minimum axial value. The d2 coefficient is slightly larger 

for the secondary mirror. This is because the sag was designed so that the radius of 

curvature (R) on both surfaces would be equal. The radii of curvature of the EC design #1 

and #2 are 1.98 km and 7.90km, respectively! 

In Figure 2 we plot radial height difference between the EC and W telescopes. At 

the primary-secondary intersection point there is no height difference. Moving towards 

the front of the primary or towards the back of the secondary, the height differences 

increase to 0.7 µm and 0.2 µm for the designs #1 and #2, respectively.  

The axial profiles of the EC designs are nearly spherical. The maximum radial 

height difference between EC equations (Eq.(11)) and spherical profiles (Eq. (9)) is 

negligible since the third and higher order terms dropped in Eq.(11) would be very small. 

These terms are proportional to (zj/R)n where R is many orders of magnitude larger than z. 

Ray trace results indicate that the derived equations do not perfectly predict the 

location of the on-axis best focus. The focus location is off 4.7 µm and 5.7 µm for the EC 

designs #1 and #2, respectively. The small error in the focus location is due to the 

approximations in the derivation of the curvature. 
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In Figure 3 the RMS spot diameter is plotted as a function of half-field angle at 

the gaussian focal plane for the telescopes. Dash curve plots the spot diameter for the EC 

design #1 and the dash-dot curve plots the spot size for the W design #1. The W design 

provides slightly improved performance across the field. The on-axis RMS spot diameter 

of the EC telescope is 0.2 arc-seconds. The performance of EC design #2 and W design 

#2 is practically the same across the field-of view. The on-axis image diameter of the EC 

telescope #2 is 0.05 arc-seconds.  

The RMS image diameters at the best focal surface are shown in Figure 4. The 

RMS spot diameters behave similarly. For both designs #1 and #2, W telescope slightly 

outperforms the EC telescope. If we were to take into account manufacturing tolerances 

and alignment requirements (half power diameter of 15 arc-second for Constellation-X 

telescopes), no differences in the telescope performance could be seen. 

7. Conclusions 

The on-axis and off-axis optical performance of the EC telescopes is surprisingly good 

compared to the equivalent W type1 telescope. For the grazing angles close to 1 degrees 

W designs are slightly better in terms of RMS spot diameter and for the grazing angles 

around 0.3 degrees or smaller there is no practical difference in the optical performance 

between the telescopes. 

The EC telescopes have several advantages over the W telescopes. They are 

easier to manufacture since the axial profiles are spherical. The polishing tools can be 

shaped to closely match the surface. The superpolishing of the spherical surface should 

be easier resulting in smoother surface quality and reduced microroughness.  
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We believe that the EC designs can be very cost effective. Since the primary and 

secondary mirror have the same axial sag, a single mandrel could be used to replicate 

both primary mirror and secondary mirror segments for the CSX/SXT telescopes. This 

would cut in half the mandrels needed for the project. 

The off-axis performance of the designs could be improved by not optimizing the 

on-axis image size as done in this study, but optimizing a specific off-axis image 

location. Another way of improving the off-axis performance is to let the curvature vary 

either on the primary or on the secondary. The resulting telescope would not be an EC 

design. We will explore these options in the future.  

Appendix A: Derivation of Radial Image Coordinate 

To derive the radial image coordinate we need to analytically trace a ray through the 

telescope and solve the equations for the image coordinate. Figure 1 illustrates the 

principle. A ray hits the primary at a point P.  The coordinates and slope angle at this 

point are h1, z1, and i1. The reflected ray makes an angle 2i1 with the optical axis. After 

the reflection the ray hits the secondary at a point S. The coordinates and slope at this 

point are h2, z2, i2.  After the reflection the ray strikes the focal plane at point H. 

Assuming that the primary mirror (j=1) and secondary mirror (j=2) have equal amount of 

curvature on their axial profiles, then, the surfaces can be expressed in the telescope 

coordinate system as: 

            (A1) 2
jjjj azahh ++= .210 j cz

The coordinate system is centered on optical axis at the intersection plane of the mirrors. 

The a1i and a2j coefficients are defined in Eq.(12). The axial slope angle ij of the surfaces 

is just the derivative of Eq. (A1) 
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           (A2) tan( ) .i a a czj j j j= − −1 22

To simplify the derivation we express the surface equations in parametric form as a 

function on quantity  

           (A3) ,0jjj iii −=∆

where i1 is the slope angle of the primary mirror and i10 is the slope angle of the primary 

at the primary-secondary intersection point. We can solve Eq. (A2) for the primary mirror 

axial coordinate and similarly write an equation for the secondary mirror: 

 

           (A4) 
cz i

i
i ij j

j
j j= − +∆ ∆( )1

2
0

2
2

0

The slope angle of the secondary i20  =3i10. In Eq. (A4) we have expanded trigonometric 

ij0 terms and kept terms up to 3rd order in first order ∆ij term and first order in  second 

order ∆ij. The same approximations will be applied to all the equations presented below. 

The radial coordinates hj can be derived by substituting Eq. (A4) into Eq.(11), keeping 

only 2nd order terms in ∆ij and expanding the coefficients. We get: 

           (A5) 1

First, we need to derive for the traced ray the secondary mirror coordinates as a function 

of the primary mirror coordinates. Since we know the slope angle of the reflected ray we 

can write an equation: 

ch i i i ij j j j j= − − −∆ ∆( )0 0
3 2

2
.

  
).2tan()2tan( 122111 izhizh +=+

           (A6)  

Deriving approximated equation for tan(2i1) and substituting the resulting equation and 

Eqs.(A4) and (A5) into Eq.(A6), we solve Eq.(A6) for ∆i2 
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           (A7) 
∆ ∆i i

i
i2 1

1
2

10
4= − − .

∆

Substituting Eq. (A7) into secondary mirror equations (A4) and (A5) we find for z2 and 

h2: 

           (A8)  9 4
= −

 
cz i i i

i2 1 10
2

1
2

10
1

2
− −∆ ∆( )

           (A9) 9 23

 

Tracing the ray from the secondary to image plane gives us an equation for the radial 

image coordinate: 

           (A10) H h

c h h i i i i( ) ( )2 0 1 10 10
3

1
23

2 2
− = − +∆ ∆ .

),L z= − −2 2( ) tan(α

where α (=2∆i2-2∆i1) is an angle between reflected ray after second reflection and optical 

axis. After deriving an equation for tan(α) and substituting Eqs. (A8) and (A9) into 

Eq.(A10), we get:           

 

           (A11) 
H H i R i i L i i

R L
i

− = − − + + + − +0 1 10 10
3

10
2

1
2

10

47
6

4 64
2

8
∆ ∆[ ( ) ( ) [ ],

 

where H0=h0-L tan(4i01).  Finally, solving Eq.(A4) for ∆i1 and substituting into Eq. (A11) 

we get the radial image height as a function of primary mirror axial coordinate z1: 

           (A12)  25 1 8
H H cz R i i L i c z

cL
i

= + − − + + + − +0 1 10 10
3

10
2 2

1
2

103
4 66

2
[ ( ) ( )] ( ).
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Figure Captions. 

Figure 1. Cross-section of the cone-cone telescope. Dashed curves represents the axial 

curvature added to the surfaces to modify the cone-cone design to the Equal-Curvature 

design. Primary-secondary intersection plane and optical axis defines the telescope 

coordinate system. Primary BCC and Secondary BCC define the body centered 

coordinate system for the mirrors. 

 

Figure 2. Radial height difference between the Equal-Curvature telescopes and equivalent 

Wolter telescopes in the body centered coordinate system. Solid line and dotted line 

represents the height difference of the primaries and secondaries of the design #1. Dashed 

line and dot-dash line represents the height difference between the primaries and 

secondaries of the design #2.   

 

Figure 3. RMS spot diameter as a function of the half-field angle for the Equal-Curvature 

and equivalent Wolter telescopes at Gaussian focal plane. Dash line and dot-dash line 

represent EC and W designs #1. Solid line and dotted line represent EC and W designs 

#2. 

 

Figure 4. RMS spot diameter as a function of the half-field angle for the Equal-Curvature 

and equivalent Wolter telescopes at best focal surface. Dash line and dot-dash line 

represent EC and W designs #1. Solid line and dotted line represent EC and W designs 

#2.
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Table 1. Basic design parameters for the Equal-Curvature telescopes and equivalent 
Wolter telescopes.  
 
Telescope i10 (deg) h0 (mm) L (m) L1 and L2 (mm) c1 (mm) c2 (mm) 

EC #1 1.14344537 800 10 300 25.1 24.9 

EC #2 0.28643407 200 10 300 25.1 24.9 

Wolter #1 1.14348032 800 10 300 25.1 24.9 

Wolter #2 0.28644711 200 10 300 25.1 24.9 
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Table 2. OSAC parameters for the Equal-Curvature telescopes and equivalent Wolter telescopes.   
 
Telescope ρ01 (mm) ρ02 (mm) K1 (mm) K2 (mm) P1 (x10-5) P2 (x10-4) d21 (µm) d22 (µm) 

EC #1 803.4853212        

        

        

        

789.5063679 -15.96638166 -47.39512177 -39.48727085 -36.03761259 -3.7812 -3.7994

EC #2 200.8729557 197.3743029 -0.999763061 -2.964744897 -2.47714389 -2.256282328 -0.9495 -0.9498

Wolter #1 803.4874205 789.5080282 -15.96811725 -47.39674315 0.0 -31.93619384 - -

Wolter #2 200.8734835 197.3747161 -0.9.99875031 -2.964849407 0.0 -1.999750054 - -

 20
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